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ABSTRACT 

This paper follows previous work regarding the settling velocity of non spherical particles in creeping motion.  

In this paper, we summarize the flow model, present solutions for the slender plate and the cylinder (Stoke’s 

paradox), demonstrate the application for euhedral pseudo hexagonal plates (KGa-1) and show the match to 

the experimental data. In addition, we derive the stream function for the sphere, the slender cylinder and the 

plate, develop the relationships to compute the flow about a settling particle, back calculate the momentum 

equation and examine the result 

 

Keywords: Settling; Wall shear; Expansion; Non spherical particles; Stokes’ paradox; Pressure gradient; 

Stream function; Creeping flow. 

NOMENCLATURE 

a edge length of an hexagon 

ASS specific surface area 

b ½ the thickness of a slender plate 

e tributary ratio  

emax maximum tributary ratio  

ep pseudo tributary ratio  

epmax maximum pseudo tributary ratio  

Gs specific gravity of solid 

Gf specific gravity of fluid 

h tributary volume 

hmax maximum tributary volume 

H thickness of an hexagonal prism 

L length of a cylinder 

g acceleration due to gravity 

p pressure gradient 

Pf potential pressure gradient 

Qs flow about the equator of an spherical 

 particle 

r radius of a sphere 

rc radius of a cylinder 

rs radius of a solid sphere 

rsc radius of a solid cylinder 

rsp radius of a pseudo solid sphere 

R radius of a spherical expansion 

Rp radius of a spherical pseudo expansion 

Rmax maximum radius of a spherical expansion 

 

Rpmax maximum radius of a pseudo expansion 

T tributary volume about any particle  

Tws submerged tributary weight  

u velocity 

v(a,b) volume as a function of a and b 

Vs settling velocity of a sphere 

Vnsp settling velocity of a non-spherical particle 

Vsc settling velocity of a slender cylinder 

Vsp settling velocity of a slender plate 

 

φ mass expansion rate per unit velocity  

 gradient 

ρf density of the fluid 

ρs density of the solids 

μ viscosity 

ξ spherical expansion 

ξmax maximum spherical expansion 

ξc cylindrical expansion 

ξpmax maximum spherical pseudo expansion 

τ shear stress 

τw wall shear 

τwc wall shear of a slender cylinder 

ψc stream function for a cylindrical expansion 

ψp stream function for a planar expansion 

ψs stream function for a spherical expansion 

 

1. INTRODUCTION 

This paper follows previous work, Mendez, Y. 

(2011 and 2013), in the derivation of a flow model 

for the settling velocity of non-spherical particles in 

creeping motion, which in further discussion will be 

referred to as the Wall Shear-Pressure Gradient-

Expansion (WPE) model.  The model has been 
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evaluated with published experimental data in water 

and other fluids with kinematic viscosities in the 

range of  1 x 10-6 and 6 x 10-7 m2/s.   

Interesting insights reached in its derivation allow 

for a rational solution for difficult geometries. A 

long sought after goal. The introduction of the Wall 

Shear τw, the Ambient Expansion ξ and the Pressure 

Gradient Pf resulting from the mobilization of shear 

stress across the expansion yield the computational 

devices to apply a simple rational to address the 

said difficult geometries. 

In this paper we present solutions for two slender 

bodies, namely, the flat plate and the cylinder and 

other selected geometries. We also solve for 

hexagonal prisms and derive the relationships for 

the stream functions for these geometries and the 

flow about the equator of a sphere. 

Remarkably, the solutions include Stokes’ paradox. 

A paradox resulting in criticism to Stokes 

mathematical formulation and proposed solutions 

by Oseen. C. W. (1910). The assumptions behind 

the WPE differ from the original formulation by 

Stokes and Oseen and other subsequent discussions. 

The fundamental difference resides in the 

assumption that the dynamics of the problem are 

controlled by shear stress and that the fundamental 

solution is tailored to answer the question of what is 

the magnitude of the pressure gradient in the free 

fluid that challenge the shear stress of the fluid? and 

what are the shape, mass and volume relationships 

of the ambient expansion with respect to the 

surface, volume and mass of the solid?. And those 

fundamental differences are what the author can add 

to the discussion. 

Our intent is to summarize the model, demonstrate 

its application and provide additional insights as an 

aid to its application for further research or to solve 

science or engineering problems.  

The limits of the applicability have not been 

established.  With regard to the fluid properties, 

good agreement to the experimental data has been 

found in fluids with low viscosities (water, 

cyclohexane and toluene). The creeping regime is 

expected to be highly sensitive of the adhesive and 

viscous forces relative to the density of the fluid or 

kinematic viscosity, as such; good agreement is 

expected for fluids with low kinematic viscosities.  

For all data sets the Reynolds number is less than 1.  

According to the experimental data the break down 

of the relationships appear to occur at a velocity 

gradient in the order of 160 s-1 in water at 20 Co.  

As a reference, for specific gravity of solids Gs = 

2.65 this velocity gradient develops on a sphere of 

30 μm radius.  

2. THE WALL SHEAR 

The WPE has been derived by first characterizing 

the driving force.  It has been envisioned that the 

submerged weight is to be transferred to the fluid by 

shear stress in the form of a tributary mass of solids 

per square meter of particle which is easily 

accomplished by dividing the submerged weight of 

solids by the area of the particle. The inverse of the 

Specific Surface Area ASS of the particle can be 

seen to be kg/m2 which can be converted into 

submerged tributary weight Tws over the square 

meter of particle (N/m2) or wall shear τw made 

available at the surface of the particle as a result of 

gravity.  The quantity sought after. For example a 

sphere of radius rs  and density ρs of known volume 

4/3πr3and area 4πr2 can be seen to have ASS=(r/3)ρs 

and submerged tributary weight over the square 

meter of its surface Tws = (r/3)(ρs-ρf)g = τw in N/m2.  

Where ρf is the density of the fluid. We thus can 

evaluate in comparable grounds the driving force 

for any geometry.  For example a slender plate of 

thickness t and a slender cylinder of diameter dc, 

both of the same density must satisfy the equality of 

their tributary volumes Tvp = t/2 and Tvc = dc/4 

respectively to mobilize the same driving τw. The 

cylinder diameter needs to be twice the thickness of 

the plate. The diameter of a sphere needs to be three 

times the thickness of the plate. It will be shown 

later that these two slender bodies and the sphere 

settle at different velocities. Although the tributary 

weight is not enough to decide on the velocity and 

do not define the geometry exactly it is very 

restrictive of the magnitude of the physical 

thickness of the particles. Formulas for the volume 

and surface area for a wide variety of geometries, 

including polyhedra, have been derived and from 

the formulas, the tributary weight is of easy access 

so that there is no additional contribution on 

presenting more examples. 

3. THE EXPANSION 

For spheres, the physical dimensions and the 

volume and area relationships defined by two 

concentric spheres is not difficult to understand. 

Our goal is to envision the volume and area 

relationships in the per square meter basis.  If we 

trim a 30 degrees cone out of the two concentric 

spheres the tributary mass of solids, the spherical 

expansion of fluid between the spheres and the 

difference between the physical dimensions and the 

volume and area relationships are rather apparent. 

This is the physical environment portrayed by the 

computations associated with the WPE with one 

additional ingredient: the size of the spherical 

expansion needs to be such to accomplish the 

computation of the shear stress at the wall through 

the dynamics of viscosity along a spherical tributary 

volume. This volumetric relationship is a key for 

applying the dynamics of viscosity.  Failure to 

establish the mathematical relationships associated 

with the free expansion as they relate to the 

geometry of the settling object in per square meter 

basis will result in failure in application of viscosity 

to solve the problem, as in previous attempts. For 

spheres this is accomplished as follows: 

 3 3

2
max 3

w
r Rdu

dr h r





                                      (1) 

 where: 

hmax = the maximum tributary volume  
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μ = viscosity[ 

u = velocity 

r = the radius of any spherical surface within the 

ambient fluid, 

R = the radius of the spherical system containing the 

ambient fluid and the solid sphere.  Where the 

velocity is zero. 

Note the ratio of the shear stress to its tributary 

volume.  The computation provides the same value 

of pressure gradient Pf along the entire ambient 

fluid. It is denoted as hmax for simplicity but is also 

spherical in geometry with radius R which is 

unknown at this point.  The pressure gradient is 

hence unknown too. It can be seen that we can 

easily work our way to the momentum equation as 

will be done later on this paper.  Upon integration 

and the known boundary condition we reach: 

















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Eq. 2 turns into 
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for the computation of the settling velocity Vs at the 

wall of the sphere. It can be seen that measured 

settling velocities of known spherical geometry can 

provide evidence of the size of the ambient 

expansion and the value of the pressure gradient. 

The experimental data lead to a value of 991Pa/m 

for fluid properties, density and viscosity at 15 Co 

(μ = 0.001139 Pa-s and ρf = 999.3 kg/m3). Note that 

the boundary condition portrayed by Eq. 4 

computes the velocity at the wall but the entire 

velocity profile can be computed from Eq. 2 which 

can be written as: 

















 2

32

3

2

32
R

r

RrP
u

f


    (5) 

Equation 4 can be written in a more friendly manner 

by defining the ratio of the volume of the spherical 

ambient expansion to the volume of the solid sphere 

emax (tributary volume) as: 

3

33

3
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3

4
3
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3
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






    (6) 

For 

 3
1

max1 erR s      (7) 

Substituting our findings in Eq. 4 we obtain 

 


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s
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    (8) 

We have denoted the factor between the brackets as 

the maximum spherical expansion ξmax. It is very 

informative. It tells us that the velocity at the wall 

from the velocity profile portrayed by Eq. 5 can be 

computed for any particle size using a single 

multiplier to the fraction shown in Eq. 8 for the 

given fluid properties.  This is how Stokes’ Law 

works so well for different particle sizes. For the 

fluid properties above and specific gravity of solids 

Gs = 2.65 emax =16.34, i.e. the volume of the 

ambient expansion is 16.34 times the volume of a 

settling particle of 2,65 specific gravity.  

Some implications were not apparent upon 

derivation of the relationships. The pressure 

gradient does not vary with the size or variation of 

the specific gravity of two identical settling 

particles as it depends only in the fluid properties. 

Differences in size or specific gravity only change 

the size of the ambient expansion. This is an 

implication of equilibrium. Since Pf times tributary 

volume equal shear stress, Pf times the volume of 

fluid in the ambient expansion equal the submerged 

weight of the particle. This can be seen when we 

note: 

f
w P

h


max


    (9) 

For spheres, 
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Which turns out to be, 

 
33

1 max

2

3
max

3

max
s

s

ss re

r
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h 


   (11) 

As such we can write, 

   

maxmax
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P
fs
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







   (12) 

The expansion will be the same for a given specific 

gravity of solids.  It will change in size in 16.34 

times the volume of the sphere or tributary volume 

but the expansion remains the same. It can also be 

seen that it will change in size for different specific 

gravity of solids. In our discussion below it will 

also be seen that the pressure gradient and hence the 

expansion, change with the variation in temperature 

as it depends on the density, viscosity and the mass 

expansion of the fluid about the velocity gradient. 

4. THE PRESSURE GRADIENT 

The velocity gradient is a mass expansion law as 

seen under the implications of the momentum 

equation: 
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 
 

dr
du

f
f

rh

P
rhP

dr

du



   (13) 

Where h(r) is the tributary volume as a function of a 

physical dimension r, normal to the surface driving 

the shear stress. The tributary volume in a fluid of 

density ρf is also a tributary mass Mt in kg/m2 as 

follows 

ft hM    (14) 

The mass expansion law can thus be written as 

dr
du

M

P

t

f

f



  (15) 

For verification we bring forward the results the 

experimental values for sand particles 0.5 to 25.0 

μm (Gs taken as 2.65) from Zegzhda (1934), 

Arkangel’skii (1935), and Sarkisyan (1958) 

reproduced by Cheng (1997). These results were 

also presented in Mendez (2011) and presented here 

for ease of reference to demonstrate how the 

derivation is accomplished. Additional experimental 

results and validation can be found in Mendez 

(2013). 

Table 1 Calculated settling velocities from Eq. 13 

and experimental values for sand in water at 15 

Co from Zegzhda (1934), Arkangel’skii (1935) 

and Sarkisyan (1958) reproduced by Cheng, N. 

(1997). Average error less than 1%. 

r 

(μm) 

Computed 

from Eq. 

12 

τw(mPa) 

Computed 

from Eq. 

8 

Vs (μm/s) 

Measured 

(μm/s) 

0.5 2.70 0.56 0.57 

2.5 13.49 14.11 14.10 

5.0 26.97 56.46 56.50 

10.0 53.94 225.83 223.00 

25.0 134.85 1411.42 1410.00 
 

Based on these results we have determine that the 

tributary ratio emax =16.34. The tributary volume 

about the rs = 25 μm particle is thus emax rs/3 = 

1.362 x 10-4 m3/m2 and the velocity gradient τw/μ = 

118.4 s-1. The tributary mass about the velocity 

gradient of 118.4 s-1 is then computed as 1.362 x 10
-

4
 m

3
/m2 × ρf = 0.1361 kg/m2 which then divided by 

the velocity gradient give us the tributary mass per 

unit velocity gradient Mt/(du/dr)=φ = 1.149 × 10-3 

kg-s/m2. This value can then be verified to be 

satisfied for the rest of the particles i.e. The same φ 

can be obtained by dividing the tributary mass of 

fluid by the corresponding velocity gradient for 

each particle.  

As one is able to compute the ratio on the right side 

of Eq. 15, Mt/(du/dr), further denoted φ, which 

based on the evidence in the above paragraph, does 

not vary, is hence plausible to compute the pressure 

gradient from the fluid properties and φ. The 

variation in the settling velocity with temperature 

can then be determined, not only based on the 

variation of viscosity and the density of the fluid but 

also in the change of size of the expansion.  

Velocities computed based on this variation of the 

pressure gradient with temperature have been 

verified to be in better agreement with the 

experimental data than Stokes’ law for variation in 

temperature from 15 to 20 Co Mendez, Y. (2013). 

The computation of the pressure gradient is thus 

proposed as  

f
f

P



  (16) 

for conditions and properties similar to those 

described in our validations. 

5. SLENDER BODIES 

The concepts of expansion and pressure gradient 

summarized above provide simple rational solutions 

to difficult geometries.  On the other hand the wall 

shear also furnish a rational to describe the driving 

force for different geometries. For instance, we 

consider a 50 μm micrometer diameter particle of 

Gs = 2.65 in water at 20 Co (μ = 0.001003 and ρf = 

998.3 kg/m3).  This particle has been observed to 

settle at Vs = 0.00166 m/s within the results  from 

Zegzhda (1934), Arkangel’skii (1935) and 

Sarkisyan (1958) reproduced by Cheng (1997). The 

wall shear τw = (rs/3)(ρs-ρf)g = 0.135 N/m2. The 

pressure gradient for the fluid properties is 

computed as Pf = (μρf)/φ = 871 N/m2 and the 

maximum tributary volume emax = (ρs-ρf)g/pf = 

18.6. This section proposed solutions for a slender 

plate and a slender cylinder mobilizing the same 

driving force as this sphere within the same fluid 

and temperature. 

In the creeping regime we know from the first 

integration of the momentum equation that we 

should be able to compute the shear stress from the 

tributary volume as 

 rhP
dr

du
f   (17) 

Where r is a physical dimension normal to the solid 

surface.  Our first geometry is the slender plate.  

The volume of a slender plate of thickness t can be 

seen to have a volume t and a solid tributary volume   

t/2 = bs in m3/m2.  The wall shear τw = (ρs-ρf)gbs of 

0.135 N/m2 is mobilized by a plate of bs = 8.33 μm.  

The relationship to be satisfied is rs/3=bs, i.e. a 

slender plate is to be of thickness 1/3 the diameter 

of the sphere to mobilize the same wall shear for 

solids with the same specific gravity. The tributary 

ratio informs that the volume of the fluid expansion 

must be 18.6 times the tributary volume of the 

particle to mobilize the same shear stress. For the 

slender plate, the tributary volume about the flat 

particle is also flat and extends to a maximum 

distance hmax = bs +bs(18.6) in meters from the 

center of the flat particle. Equation 17, for the 

slender plate is thus written as 















11

maxhh
P

dh

du
f   (18) 

thus 



Y. Mendez / JAFM, Vol. 8, No. 3, pp. 391-398, 2015. 

395 

 

 2
maxmax
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P

u
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





              (19) 

after solving for the boundary condition, u = 0 

when h  = hmax. The entire velocity profile is 

available from h = bs to h = hmax by means of Eq. 

19. We can use the useful conclusions of the 

expansion: as bs(1+emax) = hmax, Eq. 14 solves for 

the velocity of the slender plate Vsp, for h = bs at 

the wall as 

2
max

2

2
e

bP
V

sf

sp



                               (20) 

We can solve for the velocity of all plates of a given 

specific gravity within water at 20 Co using an 

appropriate multiplier to the fraction in Eq. 20.   

For a slender cylinder of radius rsc and length L, the 

tributary weight of solids per square meter of 

cylinder or wall shear τwc can be computed as  

   gr
g

Lr

Lr
fs

sc
fs

sc

sc
wc 




 

22

2

 (21) 

To satisfy for the same wall shear as our sphere rs/3 

= rsc/2. rsc = 16.67 μm.  The cylindrical tributary 

volume hc of radius Rc will take the form 

c
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HRHr
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Equation 18 can thus be written for the slender 

cylinder as 



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and solved as   
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for the boundary conditions inclusive. 

The tributary ratio allow us to write 

 2
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max
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222

1 erR

LerLrLR
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scscc
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The settling velocity of the slender cylinder Vsc as 

computed from the cylindrical expansion ξc takes 

the form 

    maxmaxmaxmax

2

1ln1ln

4

eeee

rP
V

scf

sc
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        (26) 

Figure 1 present the velocity profile for the three 

expansions across identical tributary volumes 

(holding the same volume per square meter but 

different geometry). Although some implications 

from Fig. 1 will be apparent for the reader, further 

comments and insights about Fig. 1 will arise upon 

our discussion for other geometries.  

Sphere

Cylinder

Plate
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Fig. 1. Velocity profiles for three expansions 

having the same tributary volume but different 

geometry and mobilizing the same wall shear. 

6. OTHER GEOMETRIES 

According to the previous developments the WPE 

offers a simple rational solution to embrace difficult 

geometries from equilibrium considerations. We 

need to highlight the following for a given set of 

solid and fluid properties: 

There is always a need to characterize the particle in 

terms of its tributary mass and wall shear 

accurately.  

There is always a need to characterize the geometry 

of the expansion in per square meter basis as it 

relates to the geometry of the solid particle. 

The computation of shear stress through the 

dynamics of viscosity is in equality with the 

computation of pressure gradient times tributary 

volume. Since, for different sizes the driving shear 

stress increases in proportion to the tributary 

volume of solids, there is a corresponding increase 

of the tributary volume of fluid.  From the 

mathematical stand point this effect is accomplished 

by the tributary volume. 

The maximum expansion devise assists on the 

computation of the velocity at the wall of the 

particle obeying the previous volume relationship 

but there is always a velocity profile involved    

Figure 1 shows that it does not suffice to 

characterize the wall shear only without the 

geometry as the physical dimensions and the 

velocity are highly dependent on the geometry.  

With the exceptions of spheres and the slender 

bodies in Fig. 1 characterization of the tributary 

volume on a single dimension is not a feasible goal 

as it is as ambitious as describing all geometries 

based on a single dimension.  On the other hand, 

characterization of the tributary volume and the 

dynamics based on two dimensions is extremely 

challenging. Also, Fig. 1 informs that slender 

bodies are not realistic for a wide variety of 

naturally occurring materials whose specific 

gravities range between 2.5 and 2.9 as the 

expansions are large, rendering it unrealistic for 
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even high aspects ratios.  However, the 

requirements set out in the WPE are that the 

expansion is sufficiently large to mobilize the 

driving shear stress and that the geometry of the 

entire system correlates in the per square meter 

basis. These requirements move along general 

understanding of fluids. The statements of 

equilibrium velocities, equilibrium pressure 

gradient and even equilibrium geometry of the fluid 

are accomplished within the WPE. From the stand 

point of the WPE it is not difficult to satisfy these 

requirements when we can provide an appropriate 

geometry model for the particles. An equivalent 

sphere has been the goal of plenty of research.  

Somewhat reluctantly, the author has accepted this 

being the goal of this section because in essence the 

approach presented below to determine a pseudo 

sphere is fairly distinct from previous attempts. We 

will refer to the equivalent solid sphere as the 

pseudo sphere of radius rsp concentric with the 

pseudo expansion of radius Rp. Simply put, our 

goal is to determine a sphere whose surface area is 

the same as the non spherical particle within an 

spherical expansion that mobilize the same shear 

stress as the non spherical particle. The volume of 

the non spherical particle times emax computes the 

volume of the ambient expansion required to 

mobilize the submerged weight of the particle and 

the equality of area of the non spherical particle 

Ansp with the area of the pseudo solid sphere give 

us the radius Ans = 4π(rps)2 . We denote for 

convenience the volume of any non spherical 

particle as v(a,b) and s(a,b) the area of the same 

particle to define the pseudo tributary volume epmax 

as: 

 

3

max
max

3

4

,

ps

p

r

bave
e



   (27) 

which allow us to compute the velocity across a 

pseudo expansion ξpmax that is flatter and mobilize 

the same wall shear of the non spherical particle in 

the per square meter basis as it relates to the entire 

tributary volume. Flatter than the tributary volume 

about a sphere having the same specific gravity and 

wall shear of the non spherical particle. 

The settling velocity of the pseudo sphere Vsp 

having the same shear stress and velocity Vnsp as 

the non spherical particle is hence written as 
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Note that this is the end result from the fact that the 

volume of the pseudo sphere 4/3π(rsp)3 times 

(1+epmax) = 4/3π(Rp)3 but the entire velocity profile 

is available as  
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
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from r = rsp to r = Rp.  

As an example, Georgia Kaoline KGa-1 has been 

widely characterized in the literature. A coarse 

particle of KGa-1 may be expected to be a pseudo 

hexagonal prism about 2 μm in major dimension 

Żbik et al. (2007) and about 0.15 μm thick.  2.65 for 

Gs is reasonable for the mineral. We will assume 

hexagonal prisms as the geometry model, whose 

edge length a is the same as the radius of a circle 

enclosing the prism. The edge length a of our 

particle is hence 1 μm and its thickness H = 0.15 

μm. The surface area S = 3√3a2+6aH and the 

volume v = (3/2)√3a2H.  The definitions lead to 

ASS = 5.9 m2/gr and the wall shear τw = (v/s)(ρs-ρf)g 

= 0.00103 N/m2. The radius of the pseudo sphere 

having the same area as the prism is computed from 

the equality 4π(rsp)2 = 3√3a2+6aH 

m
aHa

rsp
7

2

1

2

10965.6
4
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

 



   (30) 

For water at 20 Co, μ = 0.001003 Pa-s and the 

density ρf = 998.3 kg/m3.  The mass expansion per 

unit velocity gradient φ = 0.001149 (kg-s)/m2 

(independent of temperature as far as this research 

has verified).  The pressure gradient is reached as  

m

Paf
4.871




  

and the tributary volume 

 
59.18max 




f

fs

P

g
e


  (31) 

We compute 5.1188 as the pseudo tributary volume 

from Eq. 27. This is the end outcome of depositing 

the water held within the limits of the expansion 

about the prisms on the pseudo sphere and 

establishing the volume relationships for the pseudo 

sphere. The computed settling velocity Vnsp for this 

particle is 0.225 μm/s (1.57 μm equivalent diameter 

for reference). The colloidal fraction of KGa-1 is 

about 0.15 μm thick and about 0.75 μm in length 

(Żbik and Frost (2009)). For this particle (further 

denoted particle B), a = 0.375 μm and ASS = 7.4 

m2/gr, which lead to rsp = 0.291 μm and Vnsp = 

0.22 μm/s. Note that the pseudo tributary volume 

for this particle is 9.83, as it varies with the size of 

the particle for the same geometry (0.6 μm 

equivalent diameter for reference). In the following 

data sets, from Pruett and Webb (1993) and Żbik 

and Smart (1998), equivalent spherical diameters 

were computed from settling velocity experiments 

so that the settling velocity can be computed back 

(using temperature of 20C) from the reported 

equivalent diameter and compare. Pruett and Webb 

state that “SediGraph 5100 particle size 

measurements indicate KGa-IB is 57.8% <2 μm and 

32.0% <0.5 μm, whereas KGa-1 is 47.3% <2 μm 

(Vnsp A=1.2 μm/s as compared with 3.6 μm/s back 

calculated for the 2 μm particle) and 21.4% <0.5 μm 

(Vnsp B=0.22 μm /s as compared with 0.22 μm /s 

back calculated for the 0.5 μm particle)”.  In 

addition note the consistent result with the 
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following information: Żbik and Smart summarize 

the general description of KGa-1 as “Ninety percent 

by weight of the particles have an equivalent 

spherical diameter less than 2 μm with a median 

particle size of 0.7 μm (a particle having an aspect 

ratio of 8 and length 2a = 1.22 μm settles at the back 

calculated Vs of 0.44 μm /s for this particle) and 

specific surface area of 15.3 ± 0.5 m2/gr (BET 

nitrogen adsorption)”. Pruett and Webb report BET 

surface area measurements of 8.4 and 11.7 m2/gr 

for KGa-1 and KGa-1B respectively.  It can be seen 

that the agreement with the experimental data is 

remarkable. 

We can thus write the relationship for all sizes 

within the geometry model satisfying for a given 

velocity as 

max
2

max
2  spsp rr    (32) 

where rs is the radius of a solid sphere settling at the 

given velocity. 

7. THE STREAM FUNCTION 

For incompressible plane steady flows a stream 

function ψ exist.  Setting ψ = 0 at the far end we 

obtain 
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for the sphere, the cylinder and the plate 

respectively.  

8. THE FLOW 

For all the geometries presented above, we can 

compute the flow across the tributary volume.  This 

is the flow per meter.  For example the flow about 

the equator of the sphere goes as 
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    (36) 

which can also be written as a function of the 

tributary volume. 

9. THE MOMENTUM EQUATION 

We can work our relationships back to the 

momentum equation as: 
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for the plate, the cylinder and the sphere 

respectively and examine our results.  For greater 

insight we present the entire context for spheres 

0ρgp-Vμ 2    (40) 

A system that is three dimensional and spherical is 

expected to balance to an equilibrium condition 

such that  
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It may not be apparent that in the quiescent fluid the 

second term is zero and the shear stress is opposed 

by the mass of the fluid only in the form of a 

pressure gradient of magnitude Ifρ = Pf where the 

fluid is weightless in itself and gravity does not 

influence the motion from means other than the 

imbalance caused by the solid sphere. We can thus 

define Pf as the potential pressure gradient equal in 

all three directions. As such the third term should be 

written as ρ If  or  Pf .  For Pf equal in all three 

directions the end result is  
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The final aspect is to explain the reason why the 

product of the viscosity times the second rate of 

change of the velocity with respect to the physical 

dimension for the sphere and the cylinder does not 

yield a constant value of pressure.  The answer is 

not difficult.  It is simply because the rate of change 

of the tributary volume  T with respect to the 

physical dimension is not constant. As opposed to 

the flat expansion for which the constant value is 

satisfied.  Implicit in these findings is the fact that 

there is some missing information in the momentum 

equation. Modification of the basic equations of 

fluid mechanics have been proposed previously by 

research scientists. The end result of these 

developments is that the momentum equation for 

incompressible viscous flows across free 

expansions within a quiescent continuum should be 

written as 

0TPVμ f
2    (43) 
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yielding Eq. 42 for spheres after the mathematical 

manipulation. Note that these are the dynamics 

within an expansion whose extents and shape 

allows for the mobilization of a driving shear stress 

by the fluid.  This is where the pseudo sphere is 

distinct from previous attempts to develop an 

equivalent sphere. What we accomplish in this 

approach is to model the expansion, not the solid 

particle as it can be verified that that the pseudo 

sphere does not have the same density as the solid 

non spherical particle. In the essence we alter the 

rate of change of the tributary volume with respect 

to the physical dimension to match the flatter 

expansion about the non spherical particle. Such 

manipulation yield great flexibility to use Eq. 39 to 

solve for difficult geometries demonstrated in this 

paper.  

10. CONCLUSION 

The WPE model here presented offers great 

flexibility to solve difficult problems in low 

Reynolds number hydrodynamics. The model does 

not only reach a simple rational to solve for the 

settling velocity of non spherical particles, but also 

provides important insights regarding the geometric 

relationships associated with the mobilization of 

stress and force within fluid expansions. These 

findings also suggest that the strictly momentum 

terms of the momentum equation may be effected 

by similar terms.  
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