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ABSTRACT 

This paper undertakes a critical examination of Stokes’ law in its final form. The examination and insights of the 
viscosity principle substantiate grounds to suspect that the controlling dynamics are viscous shear rates across a 
geometry set by solid boundaries only. The examination sets grounds to conduct an analysis of the dynamics based on 
the viscosity principle alone and a flow model is derived. Based on the relationship between the pressure gradient and 
the shear forces as mandated by the viscosity principle the analysis suggests that the pressure gradient surrounding 
settling particles can be computed, is a single value and expands as required to mobilize a force equal to the driving 
force. In this context, the pressure gradient arises as a consequence of the contest between body forces in the fluid 
and the shear forces promoted by shear rates. The flow model suggests that Stokes’ law may be missing important 
information. An analysis is conducted for the settling velocity of non spherical particles based on the same dynamics 
and a mathematical solution is reached. The solution is in good agreement with published measured values and 
defines the influence of particle shape in settling phenomena.   
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NOMENCLATURE 

Ac surface area of a coin like solid 
Ao surface area of a an oblate spheroid 
ASS specific surface area 
ASSc specific surface area of a coin like solid 
ASSo specific surface area of an oblate spheroid 
a radius of an oblate spheroid  
ar aspect ratio 
b ½ the thickness of an oblate spheroid 
e tributary ratio  
e1 pseudo tributary ratio  
e1max maximum pseudo tributary ratio  
emax maximum tributary ratio  
Fd drag force 
Fv viscous drag force 
Gs specific gravity of solid 
Gsf specific gravity of fluid 
f(a,b) function of a and b 
g acceleration due to gravity 
h tributary volume 
he non spherical expansion 
 

hemax maximum non spherical expansion 
hg height 
hgmax maximum height 
hmax maximum tributary volume 
P Pressure 
R maximum radius of a spherical system 
r radius 
u velocity 
Vf volume enclosed between two concentric
 spheres 
Vmax maximum velocity 
Vs settling velocity 
μ viscosity 
μh viscosity in the tributary volume 
σ vertical stress 
ξ spherical expansion 
ξmax maximum spherical expansion 
τ shear stress 
τw wall shear 

 
 

1.  INTRODUCTION 
Stokes’ law and its applications are well known by the 
scientific and engineering community worldwide. Its 
derivation is readily available and its weaknesses and 
strengths have been highlighted widely in the literature.  

Criticism of its final form for the settling velocities of 
spheres is rare since one, it correlates very well with 
experimental data and two, is rendered with the 
authority  of being an analytical solution of a simplified  
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Navier Stokes equation.  
 
Since the early 1900’s scrutiny of the relationship has 
assumed Stokes’ relationship as being a law at infinite 
dilution. The consensus has remained nearly flawless 
for more than a hundred years. Recently, Goodstein 
(2001) points out Millikan (1913) attempt to apply a 
correction procedure to Stokes’ law and cast the 
qualifying statement “the nineteenth-century 
hydrodynamicist George Stokes had produced an exact 
formula applicable to a sphere moving slowly through 
an infinite, continuous viscous medium”. Nevertheless, 
within a different trend of thought Jinghwa (2004), after 
25 years of teaching experience recognizes with regard 
to Stokes’ law “My students were totally confused. I 
myself did not quite understand the physics of the 
problem, even though I could follow Stokes’ 
mathematical solution step by step” and continues in 
the next paragraph “In hydraulic engineering, Stokes’ 
law is presented as an experimental relation, an 
empirical law, valid for a limited range of conditions”. 
It is not the purpose of this examination to undertake a 
struggle through the dynamics of the mathematical 
formulation as the efforts of 25 years by Jinghwa Hsü 
and many other scientists have led to enlightening 
conclusions. The examination is intended to gather 
information and insights that could lead to a better 
understanding of creeping flow. The insights led to a 
fresh analysis of the problem and became the driving 
force behind this paper and presented below. 
 
Let us examine the velocity between two plates driven 
by a pressure gradient in laminar flow with a coordinate 
system at midpoint between the plates and the x axis 
oriented horizontally positive with the pressure 
gradient: 











−= 2

22
1

2 h
yh

dx
dpu

µ
       (1) 

Where: 
u = the velocity at any point between the plates  

dx
dp = the pressure gradient in the x direction 

h = ½ the distance between the two plates 
μ = the viscosity  
The maximum velocity Vmax at y = 0 turns into 

µ2

2

max
h

dx
dpV =         (2) 

As a consequence of the previous relationship and in 
virtue of the viscosity principle the shear stress τ at any 
point can be written as: 

y
dx
dp

=τ         (3) 

At the wall y = h and the shear stress τ = τw , hence: 

h
dx
dp

w =τ         (4) 

Note from Eq. (1) that for application of the viscosity 
principle the geometry is set externally and the shear 
stresses act along surfaces that are parallel to the shear 

surface at the boundaries; integration of the shear 
stresses along surfaces of defined geometry lead to the 
velocity. The simple relationship in Eq. (2) for the 
maximum velocity is just a single value on the curve. 
Note also that the pressure gradient is constant at any 
point and the shear stress at any surface is the product 
of the pressure gradient times the tributary volume of 
fluid overlying that surface. An interesting fact is that 
the pressure gradient act in the volume, thus, what has 
been quoted as a “height” or ½ the distance between the 
two plates is a tributary volume (m3/m2) over the square 
meter of surface. Technically, the drag force of the 
creeping motion is simply the wall shear τw times the 
area of the plate, no pressure drag is present, neither 
necessary. Moreover, one can categorically state, in 
laminar creeping motion, that a relationship of the form 
pressure gradient times “height” squared divided by the 
viscosity will give the velocity at some point in a 
profile of fluid. 

2.  STOKES’ LAW 
Stokes’ relationship for the settling velocity Vs in 
creeping flow is presented below: 

( ) 22
9

s f
s

gr
V

ρ ρ
µ

−
=         (5) 

where: 
 
ρs = the density of the solid 
ρf  = the density of the fluid 
g = the gravitational constant 
r = the radius of a settling sphere of density ρs. 
Reordering Stokes’ law we obtain: 

( )
µ

ρρ
29

4 2rg
V fs

s
−

=         (6) 

The fraction on the right side makes up a pressure 
gradient; times “height” squared equal the velocity at 
some point in a profile. Stokes’ analytical solution seem 
to have concluded that the settling velocity of a particle 
is the same as the maximum velocity (or fraction 
thereof) between two flat plates at distance 2r driven by 
a pressure gradient 4(ρs-ρw)g/9. Note that it can only be 
shear stresses integrated along a planar surface as there 
is no other geometry factors to make a “statement” of 
the spherical nature of the surfaces, if it is that the 
viscosity principle is to be satisfied and integration 
across geometry, set by the solid surface is possible. 
However, examination of its form and its success 
provide substantial evidence that in creeping flow the 
viscous shear is the controlling operator, there is 
nothing available in the relationship to link to the 
kinetic energy or pressure drag. To emphasize the 
dependence of the motion to shear rates across a 
velocity profile, let us examine Stokes’ law for the drag 
force Fd mobilized by a particle settling at velocity Vs 
presented below: 

sd VrF µπ6=         (7) 

In arriving to the previous relationship the analytical 
solution claims to have encountered the form of a 
vertical stress σ acting on the entire surface presented 
below: 
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r
Vs

2
3µ

σ =         (8) 

Consequently, Eq. (7) is obtained by multiplying the 
stress by the area. The dynamics of the forces that 
convert tangential shear forces at any angle to a single 
value of stress acting vertically at any point cannot be 
explained. Note however that according to the viscosity 
principle and the relationship between the shear stresses 
and the pressure gradient the shear stress at the wall can 
be written as: 

h
V

h
dx
dp

w
max2µ

τ ==         (9) 

In form, identical to Stokes “complex” vector quantity. 
As mentioned previously for a laminar viscous regime 
the drag force Fv is simply the wall shear times the area. 
Let us assume h = r and apply the force to the entire 
area of a sphere: 

max
2max 84

2
Vrr

r
V

Fv µππ
µ

==         (10) 

a conclusion almost identical to that delivered by the 
analytical solution in the absence of consideration of 
any pressure drags. As far as the logic of the principles 
set by the viscosity, Stokes’ law is the value of shear 
stress at some point across a flat profile between two 
plates at distance 2r multiplied by the area.  This drag 
force depends on the viscosity alone. A fact that 
emphasizes viscous shear rates across the geometry set 
by solid boundaries as the controlling dynamics. 
 
The previous insights made a strong case for a re-
examination of the problem based on the viscosity 
principle alone. The examination led to the analysis 
presented below. 

3. FORCE TRANSFER 
Consider a settling sphere. At the beginning of the 
settling process the solid body simultaneously forces 
the fluid outward in a radial direction and sucks at the 
top pole causing a resultant tangential force. The 
tangential force finds opposition to the movement by 
shear forces in the fluid; the Newtonian condition 
mandates a shear response equal to zero at the 
beginning and acquires a value as soon as the motion 
starts and the viscosity principle govern the motion as 
the driving forces are comparable with shear stress 
mobilized by the fluid. Shear rates are originated in this 
process and extend outward at decreasing shear rates as 
much as necessary to mobilize across the volume a 
force equal to the skin force. According to the 
definitions set by the viscosity principle the contest 
between the shear forces and the body forces become a 
pressure gradient and the equilibrium condition is set by 
a transfer of force equal to the gravitational force. The 
particle forms a system that makes his way downward 
by displacing fluid by shear rates. As noted in the treat 
to highlights of the viscosity principle the value of the 
shear stress at any point throughout the profile is 
defined by a single value of pressure gradient acting on 
the fluid overlying any given spherical surface. Any 
imbalance in the ambient pressure gradient yield to an 
equilibrium value. According to the previous scheme 

the inter phase between the solid and the fluid 
continuum offer the single available mean to transfer 
the submerged weight, a known quantity, by means of 
shear rates to the fluid. This fact imposes the first 
question, how would the solid phase transfer its energy 
through the skin?. Consider an object of area A and 
mass M; by definition in the absence of buoyancy the 
specific surface area ASS (in units of m2/kg for this 
discussion) is A/M, hence the quantity ASS-1g (N/m2), 
the inverse of the specific surface area, times the 
gravitational constant expresses the gravitational force 
available to be transferred in the form of shear stress to 
a viscous medium or the wall shear of the particle. The 
submerged weight Ws of a solid of weight W and 
specific gravity Gs within a fluid of specific gravity Gsf 
can be shown to be Ws =((Gs - Gsf )/ Gs )W; hence, the 
wall shear τw of the submerged particle can be written 
as: 

( )
g

G
GG

ASS s

sfs
w

−
=

1τ         (11) 

Note that the solid continuum is bounded to the skin, 
the only available mean to transfer the force to the fluid 
continuum and that the dynamics of the motion 
mandate a single value response by the fluid on the skin 
or wall, hence, the previous parameter appear to be an 
ideal measure of the driving force. The wall shear times 
the area of the particle equal to the submerged weight 
of the particle. Let us conduct an enquiry on whether 
the portrayed dynamics can realistically be linked to the 
settling phenomena or not with measured settling 
velocities for quartz sand (Gs = 2.65) in water at 15 Co 
(ρf = 999 kg/m3 and μ = 0.001139 Pa-s) from Zegzhda 
(1934), Arkangel’skii (1935) and Sarkisyan (1958) 
reproduced by Cheng (1997) shown in Table 1. It is 
found that Vs is proportional to τw

2 in the form Vs ≈ 
0.0775 τw

2. Note also that for a particle of sand with Gs 
= 2.65 in water the wall shear take the value of 0.0027 
N/m2, a value comparable with the viscosity itself and 
by the definition μ(du/dy) = τ the shear rate at the wall 
can be computed as τw/μ. For a sphere of density ρs, ASS 
takes the form ASS = 3/(rρs) and Eq. (11) turns into: 

( )
g

G
GGr

s

sfss
w

−
=

3
ρ

τ         (12) 

The possibility of relating the specific surface area to a 
characteristic dimension for spheres makes an 
advantage for the application of the viscosity principle 
as the driving force grows at the same pace as the 
characteristic dimension for different particle sizes. For 
other geometries commonly encountered in geological 
materials this advantage is not available. This is 
suspected to be the reason of the difficulty of applying 
Stokes’ law to different geometries.   

4. GEOMETRY 
Establishing the geometrical settings and the physical 
dimensions of the system has been shown to be the 
most relevant condition in order to quantify shear forces 
based on the viscosity principle. Integration through the 
geometry or “height” delivers the velocity. Consider a 
point symmetric spherical system; the velocity and 
shear stress is maximum at the solid surface and zero at 
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some point, the pressure gradient yield to an 
equilibrium value, is ambient and depends on the 
contest between the shear stresses and body forces on 
the mass of the fluid, the driving force is shear rate at 
the wall. Consider a sphere of radius R enclosing the 
velocity profile and defining the size of the entire 
system (including fluid and solids) at the point of zero 
shear stress and a smaller sphere of radius r within the 
fluid at the same center point (not necessarily the solid 
sphere of radius rs). The volume of fluid Vf between the 
two spheres can be computed as: 

33
3
4

3
4 rRV f ππ −=         (13) 

And the ratio e of the volume Vf to the volume of the 
smaller sphere can be computed as: 

3

33

3
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3
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4
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r
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e −

=
−

=
π

ππ
        (14) 

denoted e to take advantage of the void ratio, a widely 
known parameter in geotechnical engineering that is 
defined similarly. The tributary ratio will be term used 
in this paper. The maximum tributary ratio emax can be 
computed at the wall of the solid, where r = rs as: 
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3
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=

−
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According to the previous definition of e the following 
relationship is satisfied (4/3)πrs

3(1+e) = (4/3)πR3;        
R can be written as: 

 ( )3
1

1 erR s +=         (16) 

At the wall r = rs, e = emax and R can be computed as: 

( )3
1

max1 erR s +=         (17) 

The height or distance hg (the subscript g to denote 
geometric height) measured from R of the overlying 
fluid on any square meter of the sphere of radius r can 
be calculated as hg = R-r; hence: 

( )( )113 −+= erh sg         (18)  

The maximum distance hgmax occurs at the wall with      
r = rs and e = emax, hence: 

( )( )113 maxmax −+= erh sg         (19)  

The tributary volume h in m3/m2 of the fluid Vf 
overlying the area of the sphere of radius r can be 
expressed in the form:  

2

33

2

33

34
3
4

3
4

r
rR

r

rR
h −

=
−

=
π

ππ
        (20) 

The tributary volume takes its maximum value hmax at 
the wall with r = rs, and e = emax hence: 
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1 max
2
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s

s

ss re

r
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−+
=         (21) 

Equations (18) and (20) show that for a spherical 
system hg and h are different as oppose to a planar flow 
in which hg and h are the same and there is no need to 
define them separately. It also shows that application of 
the viscosity principle in a loose boundary requires due 
consideration to the volumetric nature of the pressure 
gradient. Ignoring this fact induce a violation of the 
dynamics by the breakdown of the constituent 
relationship between the pressure gradient and the shear 
rates. The computed values would hence deviate from 
experimental values. The viscosity is an operator in the 
geometry domain or the height hg but the pressure 
gradient bears a volumetric relationship with the shear 
stress at any point through the profile. 
 
Equation (20) quantify the dimensions of the volume 
domain and how it relates in the per meter square basis 
to the entire size of the system and provide an 
appropriate mean to conduct the integration to obtain 
the velocity. In other words in a spherical system of 
radius R Eq. (20) allows for the computation of the 
tributary volume overlying any spherical surface of 
radius r.   
 
Noting that 3/rs = ρs ASS the maximum tributary 
volume can also be expressed as: 

ASS
e

h
sρ
max

max =         (22) 

5. THE WALL SHEAR AND THE SETTLING 
VELOCITIES 

Consider a spherical coordinate system attached to the 
center of a settling sphere with wall shear τw and a 
horizontal plane across the center. Consider the 
geometric settings envisioned in the previous section, 
and the dynamics of the force transfer. A ring of 
influence of the viscous shear is formed and the 
surrounding fluid is static. Any streamline is contained 
on a vertical plane through the center of the sphere, is 
parallel to the surface of the solid sphere and an 
identical velocity profile forms perpendicular to any 
line crossing the center of the sphere; the flow is fully 
developed and spherical. Equation (20) solves for the 
quantification of the dimensions of shear surfaces as 
they relate to the entire system and sets grounds for 
integration across the geometry preserving the 
volumetric relationship between the pressure gradient 
and the shear stresses. The pressure gradient at any 
distance r within the profile p(r) is identical at any point 
and by definition can be expressed as p(r) = τw/hmax; the 
shear stress at any point across the profile is related to 
the pressure gradient and the tributary volume h in 
m3/m2 by the relationship τ = p(r)h, where h is 
measured from the point of zero shear stress and given 
that the velocity u, the viscosity μ and the shear stress τ 
are related by τ = μ(du/dr) one can write: 

maxh
h

dr
du

wτµ −=         (23) 
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In consideration that the geometry of the profile is 
identical at any location and the tributary volume h at 
any distance r from the center of the spherical 
coordinate system with respect to a boundary surface at 
a distance R defined by zero shear stress can be 
expressed from Eq. (20) as: 

2

33

3r
Rrh −

=         (24) 

Equation (23) takes the form:  

( )
2

33
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hdr
du w −−

=
τ

µ         (25) 

Equation (25) paves the way to conduct the integration 
across the geometry of the profile and maintain the 
integrity of the relationship between the tributary 
volume and the shear stresses. Solving for the velocity, 
Eq. (25) takes the form: 
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At r=R, u = 0; hence
µ
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substituting r in virtue of Eq. (18) to write as a function 
of the tributary ratio we obtain: 
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The maximum velocity Vmax occurs where r = rs and the 
tributary ratio e equal zero, hence: 
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Our treat shows that the maximum velocity and shear 
stress occurs at the wall, hence, Vmax = Vs. The wall 
shear is available and matching to the experimental 
settling velocity results for quartz sand particles 0.5 to 
25.0 μm in water at 15 Co shown in Table 1. (Gs taken 
as 2.65, μ = 0.001139 Pa-s and ρf = 999.3 Kg/m3) from 
Zegzhda (1934), Arkangel’skii (1935) and Sarkisyan 
(1958) reproduced by Cheng (1997), we find the 
tributary ratio emax = 16.34 from Eq. 29. Equation 28 
reaches a great accomplishment by allowing the settling 
velocity to be written entirely as a function of emax with 
all other known values. Note also that the viscosity 
principle dictates that the ratio of the shear stress at any 
given surface divided by the tributary volume overlying 
that surface equals the pressure gradient in the form      
τ = p(r)h. At the wall the values can be computed as: 

( )maxw h P rτ =         (30) 

Substituting the wall shear and the maximum tributary 
volume from Eqs. (11) and (21) respectively, we obtain: 
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The tributary volume and the wall shear increase with 
the radius of the particle and the pressure gradient is 
constant at 991N/m3 for the given value of density and 
viscosity of the fluid at standard temperature of 15 oC. 
Equation (31) implies that the pressure gradient times 
the volume held within the limits of the ambient 
pressure gradient equal the submerged weight of the 
particle as verified for the sand particle of 0.5 μm radius 
F = (4/3)πrs

3emaxP(r) =  8.48 × 10-15N. The equilibrium 
condition is set by the transfer of a force equal to the 
submerged weight of the particle to the fluid medium in 
the form of a pressure gradient. The same conclusion is 
reached by noting that for a sand particle 0.5 μm the 
wall shear can be computed from Eq. (12), τw = 0.0027 
N/m2 and the tributary volume hmax = emaxr/3 = 
2.723×10-6m, hence, P(r) = 991 N/m3.  
 
For convenience, based on our acquired knowledge let 
us rewrite Eq. (27) substituting the pressure gradient 
from Eq. (30) as: 
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consequently Eq. (28) can be written as: 
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Equation (33) is equivalent to Eq. (32) as a function of 
e and the value of the velocity can be computed for the 
entire velocity profile by varying e from 0 to emax to 
compute the radius and apply the relationship. For the 
maximum velocity at the wall of the particle (or e = 0) 
the settling velocity is computed as: 

( ) ( ) 
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In further discussion the relationship between brackets 
in Eq. (33) will be quoted as the spherical expansion ξ 
and the maximum spherical expansion ξmax from the 
large brackets in Eq. (34) is constant at the given value 
of density and viscosity of the fluid for the given 
specific gravity of solids. Table 1 presents comparison 
of settling velocities computed from Eq. (29) and the 
experimental values for sand particles 0.5 to 25.0 μm 
(Gs taken as 2.65) from Zegzhda (1934), Arkangel’skii 
(1935) and Sarkisyan (1958) reproduced by Cheng 
(1997). Note in Table 1 that Vs is computed using      
Eq. (29) but the same result is accomplished by         
Eq. (34). The velocity profile from Eq. (32) for the 
particle rs = 0.5 μm is shown in Fig. 1. Note in Fig. 1 
that the geometry is defined by the pressure gradient, 
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the velocity is cero at r = R = 1.29 μm (or e = emax) and 
maximum at the wall of the solid sphere (r = rs or e = 
0). The conclusion drawn in Eq. (31) shows that the 
specific gravity has no impact in the pressure gradient; 
instead, the different specific gravities change the size 
of the expansion. For instance a particle A of specific 
gravity 2.8 has a maximum tributary ratio 17.8         
(Eq. (31)) and a maximum expansion ξmax = 5.8 and a 
particle B of Gs = 2.4 has a maximum tributary ratio of 
13.85 and the maximum expansion ξmax = 4.19. Particle 
A settles 38% faster with respect to B.  This result is in 
contrast with a difference of 29% predicted by Stokes. 
 
Table 1 Calculated settling velocities from Eq. (29) and 

experimental values for sand in water at 15 Co from 
Zegzhda (1934), Arkangel’skii (1935) and Sarkisyan 

(1958) reproduced by Cheng, N. (1997). Average error 
less than 1%. 

r 
(μm) 

Computed 
from Eq. 

12 
Tw (mPa) 

Computed 
from Eq. 

29 
Vs (μm/s) 

Measured 
(μm/s) 

0.5 2.70 0.56 0.57 
2.5 13.49 14.11 14.10 
5.0 26.97 56.46 56.50 
10.0 53.94 225.83 223.00 
25.0 134.85 1411.42 1410.00 

 

 

 
Fig. 1. Velocity profile for a 0.5 μm sand particle in 

water at 15o C 
 

6. NON SPHERICAL GEOMETRIES   
In terms of science and engineering the greater interest 
for a flow model for the settling velocity of non 
spherical geometries is by far on its applicability to 
natural occurring materials such as clay minerals. In 
sedimentation analysis the selection of a geometry 
model for clay particles is often necessary. The general 
intend of this section is to emphasize the need to select 
a geometry model describing as closely as possible the 
volume-mass-area relationships of the particles. In 
general, morphology treats describe clay particles in 
terms of mean dimensions: thickness, lengths, 
slenderness and specific surface area. Thicknesses and 
specific surface areas are somewhat stable quantities for 
different minerals. It doesn’t seem feasible to work with 
ASS only as the viscosity is an operator in the geometry 
of the ambient fluid. For non spherical geometries, the 
need arises to describe the particle in at least 2 
dimensions. Clay particles are widely described in the 
literature as platelets of oblate spheroid geometry. For 

instance, Sayed et al. (2006) based on atomic force 
microscopy (AFM) display how particles are sliced in 
planes perpendicular to the minor axis to estimate edge 
and basal areas. The edge of the planes appear as 
concentric circles that further support the oblate 
spheroid shape. The procedure used by Sayed et al. 
(2006) is supported by previous research starting with 
Bickmore et al. (2002) and Jodin et al. (2004). Within a 
similar trend they are often described as coins with the 
measured basal areas and thicknesses. Based on 
morphology treats it appears feasible to describe a wide 
variety of clay particles in two dimensions. The specific 
surface area of oblate spheroids ASSo and coins ASSc of 
density ρs and dimensions ½ the length and ½ the 
thickness a and b respectively is presented below:    

( )( ) ( )( )
s

s
b

baf
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ρρπ

π
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sab
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ρ
2+
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The term between brackets in Eq. (35) is a complex 
term. For aspect ratio ar = 8 Eqs. (35) and (36) turn 
into: 

( )
sb
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ρ2
044.13

=         (37) 

sb
ASSc

ρ4
5

=         (38) 

respectively. The difference is 25 %.  For aspect ratios 
up to 100 commonly reported in the literature for a 
number of clay minerals the difference can be verified 
to be 50 %.  By means of Eq. (37) and Eq. (38) one can 
verify which model is better suited for the given 
mineral when specific surface areas are available.  The 
oblate spheroid model often yields better match 
between the measured ASS and the reported 
morphology but the coin model appears feasible for 
some clay minerals where “distinct right angles” and 
uniform thickness have been observed such as those 
reported by Żbik and Smart (1998) for Georgia 
kaolinite (KGa-1).  A hexagonal prism could also be 
used for KGa-1.  Note in addition that the specific 
surface, for aspect ratios greater than 6, becomes 
insensitive to a i.e. for a given mineral thickness and ar 
say 10 as reference value, an increase in ar to 20, 
decreases the term (1+ f(a,b))  from 1.030 to 1.009. The 
differences become smaller for higher aspect ratios and 
the specific surface area becomes virtually independent 
of a for a wide variety of clay minerals. The geometric 
issue is similar to that resulting by cutting a corner of a 
sheet of paper and calculate the specific surface area for 
the corner and the entire sheet; the values are virtually 
the same as the edge area does not significantly 
contribute to the area. Further examination confirm that 
the term (1+f(a,b)) can be simplified as: 

 ( ) 2
3

1,1 





+=+

a
bbaf         (39) 

The computed values from Eq. (39) for aspect ratios 4 
to 20 vary less than 1% with respect to the exact 
formula. The term (b/a)3/2 can be safely assumed to be 0 



Y. Mendez / JAFM, Vol. 4, No. 4, pp. 65-75, 2011.  
 

71 
 

for ar > 20. The area Ao of the oblate spheroid is 
suggested to be computed as: 
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2 12
a
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The small differences in the specific surface area for 
aspect ratios greater than 6 allow for great advantage in 
characterizing the geometry of clay particles based on 
the specific surface area and rough knowledge of the 
aspect ratios to provide good estimates of the thickness 
by means of Eq. (35). 

7. ANALYSIS 

As a part of these undertaking, a solution for the 
settling velocity of non spherical particles was sought 
by characterizing the tributary volume in the geometry 
domain of non spherical geometries; an approach that is 
a prerequisite to apply the viscosity principle. Oblate 
spheroid geometry was used with the intent to identify a 
characteristic length that would correlate with the size 
and geometric height hg as identified for spherical 
systems without altering the volumetric relationships. 
As previously envisioned, with the previous approach, a 
solution without adding unnecessary complexity was 
found to be very difficult.  The reason for the difficulty 
is that the sought outcome is just as ambitious as to 
derive a characteristic dimension that allows for the 
computation of the entire set of volume mass area 
relationships for non spherical geometries. It is later 
found that the entire system can be better characterized 
in the tributary volume domain without compromising 
rational arguments, dynamics and precision. The latter 
findings are discussed below. 
 
From the basis of the analyses conducted in this paper 
the following issues can be considered factual aspects 
of the geometric relationships between the fluid 
medium and the solids: 

(1) The wall shear is constant through the entire 
surface of the particle. Hence, the tributary 
volume, by the definition τw/hv = P(r), is constant 
through the entire fluid interstice but it varies in 
geometry. 

(2) Despite the differences in geometry of the tributary 
volume the flow regime at any point cannot be 
considered independent of some average condition 
dictated by the constant pressure gradient. This 
condition makes an x,y characterization technically 
feasible  

(3) The characterization of the tributary volume can be 
done independently of a detailed characterization 
in the geometric height domain (this will be shown 
later on this paper).   

(4) The viscosity is an operator in the geometry 
domain. This raises the difficulty of obtaining a 
characteristic length of the solid that correlates 
with the geometry of the fluid medium and the 
driving force at the same time. 

Due to (3) if one sets grounds for an operator in the 
tributary volume domain without compromising the 

operator in the geometry domain (as it is still the 
controlling operator) many difficulties imposed by (4) 
may become removed.   

Let us recover additional information from Eq. (25) 
shown below: 
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Re-writing as a function of the tributary ratio we obtain: 
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Note that between brackets the volume and the area are 
the required parameters, which are known quantities. 
Eq. (42) shows that as long as we can define the volume 
and the area of the particle we can calculate the 
tributary volume without any geometric correlation 
between the solids and the fluid medium which 
confirms the statement in (3). Equation (42) can 
potentially remove some difficulties in (4) to address 
the issue of non spherical geometries; however,         
Eq. (42) still has a serious limitation, e g. a 
characteristic dimension r that correlates   with both, 
the driving force and the geometry of the fluid is not 
available, hence, integration with respect to r is useless. 
Let us define μh as the shear stress per unit velocity 
gradient with respect to the tributary volume h to satisfy 
μh(du/dh) = μ(du/dr) and rewrite Eq. (36) as: 
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μh is an unknown operator. Note that for two concentric 
volumes A and B; B considered an expansion of A, the 
definition of the quantity h and hg for the volumes A 
and B (m3/m2) imply that the greater the expansion is B 
from A the greater is the difference between the 
tributary volume and the geometric “height”, h and hg 
respectively and approximate the same value the 
smaller the expansion is B from A.  In contrast for 
planar surfaces as shown in the examination of the 
viscosity principle h and hg are the same quantity and 
the shear stresses can be quantified as P(r)y or μ(du/dy)  
as hg = y = h at any point leading to the equation: 

( )yrP
dy
du

=µ         (44) 

and the integration delivers  u = P(r)y2/(2μ)+C. Setting 
the boundary conditions for the planar flow between 
two plates Eq. (44) turns into Eq. (1). However, for 
particles A and B Eq. (44) is not satisfied.  The tributary 
volume h and y differ from one another by a different 
amount through the entire profile and the velocity with 
respect to the tributary volume du/dh differ from the 
velocity with respect to the distance du/dr by a different 
amount at every point. However, the product μhdu/dh 
must yield the same value as μdu/dr implying that μh 
can not be a constant value. This fact emphasizes that μ 
is still the controlling operator and we are just trying to 
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find a mean to move the same operator to the volume 
domain. Returning to Eq. (43), between brackets we 
have m3/m2 = m. Hence, integration over the tributary 
volume can only lead to:  

( ) ( ) ( )( )

( )
C

e

eerrpu s

h
+

















+

+−+
−=

2

3
2

max

13

11
2µ

        (45)    

At e = emax u = 0, hence C = 0. Rewriting: 
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Let us denote he, the non spherical expansion, as the 
relationship between brackets in Eq. (46) and rewrite it 
as: 
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Solving Eq. (46) for the maximum velocity at e = 0 we 
obtain: 
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Let us define the maximum non spherical hemax as 
hemax=(emax/3) in Eq. (42) and rewrite it as: 
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and let us bring forward the equation for the settling 
velocity of spherical particles as a function of e from 
Eq. (33): 
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Technically, for a sphere, we can either conduct 
integration through the tributary volume or through r, 
the geometry domain, to obtain the same result. 
Equating both relationships should yield relevant 
information and insights. Let us substitute the 
expansion ξ in Eq. (50) and present the result of the 
equality of Eqs. (46) and (50): 

ξµ
µ 2

eh h
=         (51) 

μh is not a constant, it varies along the entire profile or 
where the shear stresses are being taken. As e tend to 
emax, μh tends to μ, meaning simply that the relationship 
between the tributary volume and the geometric height 
becomes similar to that of a flat surface in which h and 
hg are the same; note that the ratio he

2/ξ tends to one as 
e tend to emax but it becomes undefined as e = 0. 
Nevertheless, we can write with impunity: 

ξµ
µ

+
+

=
0001.0

0001.0 2
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        (52) 

 Note also that the greater the tributary volume the more 
it differs from the geometric height; hence, the shear 
stress per unit velocity gradient with respect to the 
tributary volume becomes a greater quantity. This 
should not be taken as to suggest a viscosity that varies 
depending on the geometry of the settling particle; 
instead, is a geometric consequence of moving the same 
controlling operator to the volume domain. It is 
apparent that a small tributary volume being held by a 
large sphere is “flatter” than a large tributary volume 
being held by a small sphere.  As a consequence,       
Eq. (52) offers a mean to decide on the shape of the 
velocity profile based on the geometry of the particle 
itself.  The evolution of μh for a larger sphere can 
successfully portray the flatter tributary volume of the 
flatter particle. This is equivalent to consider the surface 
of a quasi flat particle as a portion of a sphere 
somewhere approaching infinite. Let us deposit the 
amount of water held by a non spherical particle of a 
and b dimensions over a sphere of radius a to obtain the 
pseudo tributary ratio e1 over that sphere as follows:  
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And the maximum pseudo tributary volume e1max takes 
the value: 

a
be

e max
max1 =         (54) 

It is expected based on the rational provided previously 
that the tributary volume over the particle of radius a is 
flatter, as expected for the non spherical particle.       
Eq. (53) furnishes the capacity to make a statement of 
the flatness of the tributary volume based on the 
geometry of the particle itself. The shear stress per unit 
velocity gradient with respect to the tributary volume 
takes the value: 
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or simply written as: 
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As stated previously if we accomplish our goal on (4) 
of conducting integration over the tributary volume and 
derive an expression for the variation of the shear stress 
per unit velocity gradient with respect to the tributary 
volume we only need to be able to describe the volume 
and the area of the particle. Let us apply our 
morphology model (volume and area) in Eq. (46): 
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Substituting μh according to Eq. (52): 
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Solving for the maximum velocity with e = 0 and e1 = 0 
we obtain: 
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or 
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Equation (60) removes the difficulty induced by the 
absence of a characteristic dimension that correlates 
with the driving force and the geometry of the fluid 
medium at the same time. By means of the relationship 
between the largest brackets in Eq. (57) an appropriate 
quantification of the tributary volume is made and the 
integrity of its relationship with the pressure gradient is 
preserved. Finally, by establishing the variation of the 
shear stress per unit velocity gradient with respect to the 
tributary volume, not only Eq. (52) gives meaning to 
the original integration due in Eq. (43) but also allows 
for a mean to make a statement of the flatness of the 
tributary volume based on the morphology of the 
particle.  
 
Although, simple, Eq. (60) is the result of an intense 
scrutiny of the relationships between the viscosity 
principle, the geometry of the particles and their impact 
to the geometry of the fluid medium. It doesn’t seem to 
incur in any significant violation of the controlling 
dynamics and because of its form could be used for 
many geometries with appropriate considerations for 
the ratio he1

2/ξ1max. Note that the relationship between 
the large brackets in Eq. (57) is the same as he and in 
consequence, for a sphere the ratio he

2/he1
2 cancel and ξ1 

= ξ i.e. the mission of the expansion is the transfer of 
the volumetric domain to the geometry domain that 
allows the use for the single value of viscosity. Finally, 
note that the ratio (0.0001+he1

2)/(0.0001+ξ1) varies 

from 1.00 to 1.63 and from 1.00 to 1.07 for Kaolinite 
and Montmorillonite respectively. 

8. VALIDATION 
Consider the results published by Lu et al. (2000) who 
measured settling velocities of Georgia Kaolinite and 
report highly non spherical geometry with the average 
major dimension within the range of one to three μm.. 
The mean particle taken as an oblate spheroid with 2a = 
2 μm, aspect ratio of 10 and Gs = 2.65. The average 
length as furnished by a “limited representative 
elemental volume” by Scaning Electron Microscopy 
(SEM) analysis and the aspect ratio and specific gravity 
are representative values for the given mineral. 
Additional measurements by Lu et al. (2000) include 
mica particles (“platy flakes”) of relatively uniform 
thickness between No. 200 and No. 325 sieves (75 μm  
and 43 μm respectively) and Gs ≈ 2.82. SEM images of 
the tested samples are also presented in the subject 
paper showing an approximate average thickness in the 
order of 7μm and elongated particles exceeding by far 
the nominal range.  The minimum and greatest length 
can be taken as being 43 μm and 100 μm with mean 
particle size of 71 μm. For the geometry model the 
particles are taken as coin like structures. Note that for 
the specific gravities used, the maximum tributary ratio 
emax computed from Eq. (31) and the pressure gradient 
of 991 N/m3 takes the values of 17.25 and 18.01 for 
Georgia kaolinite and mica respectively. Another set of 
experimental values from settlement experiments to 
consider are those presented by Pruett and Webb (1993) 
and Żbik and Smart (1998). Pruett and Webb state that 
“SediGraph 5100 particle size measurements indicate 
KGa-IB is 57.8% <2 μm and 32.0% <0.5 μm whereas 
KGa-1 is 47.3% <2 μm and 21.4% <0.5 μm.”.  Żbik and 
Smart summarize the general description of KGa-1 as 
“Ninety percent by weight of the particles have an 
equivalent spherical diameter less than 2 μm with a 
median particle size of 0.7 μm and specific surface area 
of 15.3 ± 0.5 m2/gr (BET nitrogen adsorption)”. Pruett 
and Webb report BET surface area measurements of 8.4 
and 11.7 m2/gr for KGa-1 and KGa-1B respectively. 
Reported ranges of aspect ratios for KGa-1 from Brady 
et al. (1996) and Żbik and Smart (1998) are 2 to 10 and 
4 to 8 respectively. The median particle size of 0.7 μm 
described by Żbik and Smart fall well within the 
measured particle sizes.   
    
For validation purposes two scenarios are considered. 
In the first scenario, the known general morphology of 
the particles will be used to assess the validity of the 
portrayed dynamics and flow model. In the second 
scenario it is assumed that there is no knowledge of the 
geometry in order to find what is there to reveal about 
the morphology from the settling velocity.  
 
Assuming a standard temperature of 15 Co the 
measured settling velocity for the size defining 50 % 
finer by Lu et al. (Stokes’ radius ≈ 0.2 75 μm) of 
Georgia kaolinite is in the order of 2.7×10-7 m/s. If we 
assume knowledge of the aspect ratio only in the order 
of 10 in Eq. (60), the oblate spheroid has dimensions 2a 
= 1.86 μm and 2b = 0.186 μm. Note the close 
agreement with the SEM analysis. Considering an 
aspect ratio of 9 for KGa-1 median particle reported by 
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Żbik and Smart (0.7 μm equivalent diameter) is an 
oblate spheroid of dimensions 2a = 2.26 μm and 2b = 
0.25 μm. Using coin like structures for the mica 
particles and a thickness of 6.7 μm Eq. (60) satisfies for 
the mean particle velocity of 5.7 ×10-4 m/s. Variation of 
the thickness from 2 to 8 μm satisfy for the entire range 
of experimental values.  
 
For the second scenario note also that a thickness for 
the large aspect ratio particle and an equivalent 
diameter can also be easily computed for any velocity. 
Equation (60) turns into the settling velocity of spheres 
as portrayed by Eq. (34) for either coins or the oblate 
spheroid model when the aspect ratio is 1. As there is 
always an equivalent sphere for a flat particle one can 
write: 
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hence, 
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The fraction on the right depends only on the aspect 
ratio for the given temperature and fluid.  Note the role 
of the expansion and the tributary ratio to account for 
different densities of solids and fluid. Let us return to 
the experimental results to note that the 0.7 and 0.5 μm 
size particles of kaolinite (Gs = 2.62) described at 
assumed temperature of 15o C settled at approximately 
0.380 and 0.194 μm/s respectively. By means of        
Eq. (62) the simple graph shown in Fig. 2 defines the 
general geometry of all the oblate spheroids and coins 
settling at the given velocities.  

 
Fig. 2. Combination of aspect ratio thickness of 

particles with Gs = 2.62 settling at 0.380 and 0.194 
μm/s for coins and oblate spheroids. 

 

Based on TEM micrographs Żbik et al. (2007) 
describes the course fraction of KGa-1 as “pseudo-
hexagonal in shape plates a few micrometers in size”. 
Żbik and Frost (2009) show an SEM image showing the 
finest colloidal fraction of KGa-1. The clay particles are 
pseudo hexagonal euhedral crystals of approximately 
0.75 μm in major dimension with a few exceptions in 
the range of 0.14 to 0.35 μm.  Żbik and Frost inferred 
an average aspect ratio of 5.3. Note also that the range 
of particle sizes for “as shipped” KGa-1 may range in 
the order of 0.1 to 40 μm (Chipera and Bish 2001) in 
equivalent diameter and the sample may contain "larger 

stacks and defoliated pseudo-hexagonal in shape plates 
a few micrometers in size" Żbik et al. (2007).  Using 
the ranges of aspect ratio given in the literature, Eq. 
(62), as noted in Fig. 2 is in good agreement with the 
observed morphology. Given that the velocity profile is 
modeled along the flatter side of the particle the good 
agreement also suggests that, as expected, the particles 
settle along its long axis. Equation (62) embraces the 
discussion regarding the influence of particle size and 
shape in settling phenomena to furnish great advantage 
in sedimentation analysis.  It also adds practical 
significance to the research effort in morphology and 
specific surface area of clay particles.  
 

9. CONCLUSION 
From the beginning of the study of the principles of 
fluid dynamics the impact of the kinetic energy, 
pressure drags and the viscosity concepts has been 
naturally linked to the forces mobilized by fluids 
against solid objects or vice versa. For large particles or 
objects logical and experimental evidence show that the 
motion occurs by displacement of fluid by the kinetic 
energy and in a smaller quantity by viscous shear. It is a 
natural approach to use the same logic for creeping 
motion. However, this paper suggests and substantiates 
that in creeping motion the displacement of fluid occurs 
by shear rates only, i.e. the shear resistance of the fluid 
is comparable with the shear stress mobilized by the 
particle. The equilibrium condition is satisfied by the 
transfer of the force to the fluid medium in the form of 
a pressure gradient and the magnitude of the pressure 
gradient is the result of the contest of the body forces 
against the shear forces. Not only the flow model 
derived in this paper provides useful insights of the 
fluid dynamics in creeping motion but also provided a 
rational approach to derive a flow model for non 
spherical particles in creeping motion. The model 
shows that settlement analysis of natural occurring 
materials can be performed with very basic knowledge 
of their morphology and embrace the influence of 
particle size and shape in sedimentation phenomena. 
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