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ABSTRACT 

This paper follows previous work regarding the settling velocity of non spherical particles in creeping motion.  

In the previous work it was found that the shear stress in the fluid is opposed the mass of the fluid.  The 

challenge of the shear stress by the mass imply a pressure gradient by default, i.e. the transfer of the shear 

stress to the mass is in the form of a surface stress (Pa/m), perpendicular to the shear stress, controlled by the 

mechanics of viscosity. The dynamics are triggered by the wall shear of the particle. Examination using 

measured settling velocities shows that the pressure gradient is a unique value for the fluid properties, so that 

the computed shear stress equal to the viscosity when the velocity gradient is equal to unit and the velocity is 

satisfied simultaneously, hence, defining the size of the expansion about the shear stress.    We learned that 

application of the viscosity principle demand simultaneous consideration of the volumetric nature of the 

pressure gradient and the geometry dependence of the velocity gradient.  We here undertake an examination 

to find how the pressure gradient is controlled by the fluid properties and a solution is reached.  The solution 

is in good agreement with published experimental data.  In addition we pursued further improvement of the 

relationships derived previously with further simplification.  
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NOMENCLATURE 

Ao surface area of a an oblate spheroid 

ASS specific surface area 

b ½ the thickness of an oblate spheroid 

ar aspect ratio 

b radius of an oblate spheroid 

e tributary ratio  

e1 pseudo tributary ratio  

e1max maximum pseudo tributary ratio  

emax maximum tributary ratio  

Gs specific gravity of solid 

Gf specific gravity of fluid 

f(a,b) function of a and b 

g acceleration due to gravity 

 

h tributary volume 

Pf Pressure gradient 

R maximum radius of a spherical system 

r radius 

u velocity 

Vf volume enclosed between two concentric

 spheres 

Vs settling velocity 

µ viscosity 

ξ spherical expansion 

ξmax maximum spherical expansion 

τ shear stress 

τw wall shear 

 
 

1.  INTRODUCTION 

The wide variety of fields of science and 

engineering that may benefit from the study of the 

settling of particles in creeping motion have been 

widely pointed out in almost all research papers and 

books in low Reynolds hydrodynamics.  Happel J. 

and Brenner H. (1983) lists chemical, civil and 

mining engineering among other fields.  

In previous work Mendez, Y. (2011) on the settling 

velocity of isolated spherical and non spherical 

particles moving within a quiescent fluid continuum 

in creeping motion it was concluded that, given a 

force at the wall of the settling object, the fluid 

properties are entirely responsible for controlling 

the dynamics and the required dimensions of the 

ambient fluid so that a force, equal to the driving 

force is mobilized at the wall.  Although simple, a 

deep examination of the dynamics is required to 

undertake on further insights of the dynamics of the 

ambient expansion about settling spheres later 

examined and evaluated in this paper.  The general 
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intent is to derive a rational approach to address 

practical problems in sedimentation. This goal 

moves within the rational guidelines quoted by H, 

Henning Winter (2011), “Proposed research should 

contribute to basic understanding; thus enabling the 

better design; predictability; efficiency; and control 

of systems that involve fluids”. 

In the previous work examination of the quantities 

involved led to the conclusion that the driving force 

is shear stress.  It was envisioned that there is mass 

quantity associated with any square meter of solid 

in kg/m2 as provided by the inverse of the quantity 

known as the specific surface area ASS. Further 

examination leads to the conclusion that this 

quantity is a tributary mass of solids on the square 

meter MTS in kg/m2 and the effect of gravity follows 

as MTS g.  Is then a trivial matter to demonstrate that 

for solids of specific gravity GS within a fluid of 

specific gravity GF, the gravitational effect on the 

submerged tributary mass of the particle is ((GS-

GF)/GS)MTS g.    In the creeping regime this quantity 

just needs to be small enough so that the shear 

stresses in the fluid (comparable in magnitude) 

control the motion through the skin by wall shear 

τW. One can verify that the settling velocity for 

spherical particles Vs is proportional to τw
2 in the 

form Vs ≈ 0.0775 τw
2.  The next step is to note the 

relationship between the ambient fluid and the wall 

shear under the dynamics of viscous flows.  In this 

context, there is no deliberate attempt to introduce a 

pressure gradient; however, we have studied how in 

viscous flows shear stresses are induced by a 

pressure gradient.  One should hence wonder, what 

the response of the fluid is, when the shear stress is 

the driving force.  The introduction of the pressure 

gradient in the relationships is rather confusing 

because it is often associated with external forces 

but a close examination of the concept itself 

provides clarification.  The pressure gradient is a 

surface force acting in the direction of the pressure 

loss in Pa/m and its definition implies that the net 

force acting on a volume of fluid (under the effect 

of the pressure gradient) equal the pressure gradient 

times the volume of the fluid in identical 

computation that a body force computes the force 

when multiplied by the volume or the mass under 

its influence.  Although the definition is important 

in its understanding, one can give, from a practical 

stand point, the same consideration to the pressure 

gradient and a body force in N/m3.  To avoid any 

confusion, it will be referred to in Pa/m, however, 

readers not strictly in the field of fluid dynamics 

may wish to refer to it as a body force for comfort.  

On the question raised, it was concluded that the 

relationship between the wall shear and the ambient 

fluid prescribed by the dynamics of the viscosity 

principle dictate the mobilization of a surface force 

or pressure gradient Pf who’s plane of action is 

perpendicular to the direction of the velocity and the 

shear stress.  From conventional mechanics it is 

easy to conclude that the shear stress in the fluid is 

being opposed by its own mass and that the transfer 

of the shear stress to the mass is in the form of a 

surface stress (Pa/m), perpendicular to the shear 

stress, controlled by the mechanics of the viscosity 

principle.  The magnitude of this quantity is 

unknown; however, one can find its value, with 

measured settling velocities Vs from the following 

relationship: 
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where: 

rs = the radius of the solid sphere, 

emax  = the maximum tributary ratio, and 

µ = the viscosity,  

which is the equation for the settling velocity of 

spheres derived from the previous dynamics and 

appropriate geometric considerations.  Solving Eq. 

1 for emax, we find emax = 16.34 with all other 

known quantities and compute the pressure gradient 

as the ratio of the shear stress by its tributary 

volume. Pf = 3τW/( emaxrs) = 991Pa/m for fluid 

properties, density and viscosity at 15 Co (µ = 

0.001139 Pa-s and ρf = 999.3 kg/m3).  The reader 

should refer to derivation of Eq. 29 in the previous 

work for the definitions of  τW and emax for spheres.  

As a result, the settling velocity at a given 

temperature and fluid can be computed as: 
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Equation 2 solves for the velocity at the wall of the 

settling sphere but the entire velocity profile can be 

computed from: 
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where: 

u = velocity 

r = the radius of any spherical surface within the 

ambient fluid, 

R = the radius of the spherical system containing the 

ambient fluid and the solid sphere, where the 

velocity is cero. 

The relationships between brackets in Eq. 3, in 

further discussion, the spherical expansion ξ, 

contains the geometric considerations to compute 

the velocity associated with any shear stress within 

the spherical ambient fluid.  The relationship 

between brackets in Eq. 2, in further discussion, the 

maximum spherical expansion ξmax, allows for the 

computation of the velocity at the wall.   

The dependence of the pressure gradient, on a plane 

normal to the shear stress, in the fluid properties, 

namely, viscosity and density; and how it influence 

the expansion so that the fluid mobilize the driving 

force at the wall of a settling particle is the subject 

of this paper.   

Equation 2 is the result of the sound application of 

basic concepts in fluid mechanics, namely, the 

pressure gradient and viscosity.  Its soundness is 
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verified on conventional mechanics by the 

preservation of the integrity and significance of 

their computational advantages.  In this context, 

there will be no further examination of the basic 

mechanics.  If not already apparent, the reader is 

encouraged to conduct an examination.   

2. THE EFFECT OF THE DRIVING 

FORCE 

Consider the definition of the tributary ratio as the 

ratio of the volume of the ambient fluid to the 

volume of the solid sphere: 
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Based on the tributary ratio simple definitions for 

the distance between the solid sphere to the 

boundary of the spherical ambient fluid hgmax = 

rs((1+emax)
1/3-1) and the tributary volume of fluid 

hmax=(emaxrs)/3 overlying any square meter of 

particle, both inherently being considered in the 

derivation of Eq. 1, can be obtained.  The maximum 

expansion groups the geometric considerations 

required to compute the shear stress and the velocity 

at a point across the ambient fluid coinciding with 

the surface of the solid sphere.  The effect of the 

driving force in Eq. 2 is in the definition of the 

magnitude of emax.  Here we note in general form 

the relationship between the wall shear and the 

pressure gradient as: 

f
w P

h
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max

τ
 (5) 

which we further develop for understanding as: 
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For spheres the same conclusion arises as: 
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where: 

ρs = the density of the solid sphere, 

g  = the acceleration due to gravity 

We conclude, from Eqs. 6 and 7 that the tributary 

ratio is just so much greater as the driving force, 

which are both, in proportion to the radius for 

spheres and Eq. 2 computes the velocity for all 

particle sizes.  The resisting force is the pressure 

gradient and the dynamics of the transfer of the 

force to the sphere is viscosity. 

From Eq. 1 we found emax=16.34 for particles of 

sand with Gs = 2.65 and the pressure gradient can 

also be computed from Eq. 7 at 991 Pa/m. Note that 

the effect of the specific gravity, or relative density, 

as provided by Eq. 6, is an increase or decrease in 

the tributary ratio, and hence the expansion.  

With regard to the break down of the creeping 

regime, it appears to occur when the velocity 

gradient reaches about 140 s-1, which is slightly 

above the velocity gradient mobilized by a sand 

particle of radius rs=25µm and specific gravity 

equal to 2.65 in water at 20 Co computed as 

τW/µ=134. 

In this section, it can be seen that the experimental 

data confirm “the preservation of the integrity and 

significance of the computational advantages” of 

the concepts of pressure gradient and viscosity in 

the flow model studied on this paper and published 

in previous work.  The conclusions derived will be 

considered factual in the following sections.   

3. THE PRESSURE GRADIENT 

Let us consider the ambient fluid about a settling 

sphere and the dynamics envisioned in our flow 

model.  Let us ignore the solid surface and consider 

a shear surface midway within the ambient fluid. 

The value of the shear stress on the given surface 

depends on the shear rate and the viscosity.  Above 

and below the shear surface the pressure gradient 

becomes entirely defined by the fluid properties.  

Returning to the fluid layer bounded to the solid 

surface, which is in no way different than the layer 

midway within the ambient pressure gradient we 

note that the driving force just needs to be small 

enough to trigger the dynamics and does not play a 

role on its value. Although, under the basic concepts 

of fluid mechanics and the experimental evidence, 

the previous insights appear rather conclusive, none 

of the developments, along the derivation of Eq. 2, 

provide apparent indication on how the pressure 

gradient is defined by the fluid properties.   

In this section we undertake an examination of the 

mass, volume, density, velocity gradient and 

viscosity quantities involved in the dynamics within 

the ambient fluid in order to achieve an 

understanding on how the pressure gradient is 

controlled by the fluid properties.  The findings are 

later validated with published data.  Except, 

otherwise specified, when computations are 

involved water properties at 15 Co are considered, 

namely, µ = 0.001139 Pa-s and ρf = 999.3 kg/m3. 

Let us write in general form the equation for the 

settling velocity of an isolated particle moving 

through a quiescent fluid continuum: 

hP
dr

du
f=µ  (8) 

where: 

h = the tributary volume 

Eq. 8 can also, for clarity, be presented as: 

dr
du

h

Pf

=
µ

 (9) 
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The ratio µ/Pc is unique to the fluid at a given 

temperature. There is a corresponding tributary 

volume for every value of velocity gradient. Let us 

remove the fluid properties from the right side of 

Eq. 9 by noting that the tributary volume in a fluid 

of density ρf is also a tributary mass Mt in kg/m2 as 

follows: 

ft hM ρ=  (10) 

Eq. 9 takes the form: 

dr
du

M

P

t

c

f
=

µρ
 (11) 

Note how a tributary mass expansion rate is defined 

by the fluid properties. According to the 

conclusions of Eq. 2, we compute the tributary mass 

per unit velocity gradient equal to 1.148 x 10
-3

kg-

s/m
2
. Let us denote the tributary mass per unit 

velocity gradient φ as φ = Mt/(du/dr) and rewrite 

Eq. 11 as 

f
f

P=
ϕ

µρ
 (12) 

As a result of simple conventional fluid mechanics 

we concluded that the shear stress will be opposed 

by a pressure gradient acting on a plane normal to 

the shear stress.  The previous development appears 

to suggest that one can decide on the pressure 

gradient from the fluid properties and the dynamics 

by means of Eq. 12.  The pressure gradient so 

derived is a unique value for the fluid properties, so 

that the computed shear stress equal to the viscosity 

when the velocity gradient is equal to unit and the 

velocity is satisfied simultaneously, hence, defining 

the size of the expansion about the shear stress. 

In addition, working in further development, let us 

keep in mind the surface force nature of the 

pressure gradient and highlight that for unbounded 

water of density equal to 1,000 kg/m3, the effect of 

gravity is the same as a pressure gradient of 9,807 

Pa/m so that the same consideration can be given to 

the body force g to compute the force.  Giving the 

same consideration to the conclusion of Eq. 12, for 

an unbounded fluid, we note that the pressure 

gradient mobilized by the viscous resistance (or 

deformation resistance) of 991 Pa/m is less than the 

pressure gradient mobilized by gravity, hence, 

incapable of   keeping a pressure head.  In the same 

context, we note that the ratio pc/ρf is a body force If  

in N/kg having the same effect as the pressure 

gradient,  to rewrite Eq. 12 as: 

ϕ
µ

=
fI

 (13) 

Although the term “body force” is being used, If is 

also a pressure gradient.  Instead of per meter, in the 

direction of the applied stress, is per kilogram 

distributed on the square meter, where the stress is 

being applied. 

Equation 14 leads to a rational definition of the 

Newtonian limit, when If = g as 

 ϕµ g=  (15) 

For an unbounded Newtonian fluid, the build up of 

a pressure head is not possible until the viscosity 

overcomes 0.01126 Pa-s.  It is not expected that the 

relationships derived are applicable where the 

viscosity reaches this limit.   

4. VALIDATION 

In this section we note that Eq. 11 also defines the 

size of the expansion about a unit velocity gradient 

and hence the geometry.  One can verify that the 

definition of the geometry is essential in the 

computation of the velocity based on the dynamics 

of viscosity.  We hence conclude that the 

computation of the velocity based on the 

prescriptions defined by Eq. 11 is ultimately, 

impossible, unless, the developments on the 

previous section are based on a sound assessment of 

the dynamics.  For the purpose of validation, one 

may try two approaches: one, using of measured 

settling velocities to find the pressure gradient and 

the tributary mass by means of Eq. 2, or two, use 

the principle right away to compute settling 

velocities (or the radius) and compare with 

experimental data.  We consider the latter approach 

with data sets including identical particle sizes in 

different fluids and temperature.    

The data sets include the following experimental 

values of settling velocities indicated on Table 2: 

For sand particles 0.5 to 25.0 µm (Gs taken as 

2.65) in water at 15 Co from Zegzhda (1934), 

Arkangel’skii (1935) and Sarkisyan (1958) 

reproduced by Cheng, N. (1997).  

The average settling velocity for sand 

particles 5.0 to 25.0 µm (Gs taken as 2.65) in water 

at 20 Co from Raudkivi (1990), also reproduced by 

Cheng, N. (1997);  

The hard sphere limit velocity at infinite 

dilution for identical organophilic silica hard 

spheres 0.031 to 0.037 µm radius in cyclohexane 

and in toluene reported by Jansen et al. (1986)  

The hard sphere limit velocities at infinite 

dilution reported by Davis et al. (1991) for hard 

spheres ranging from 0.09 to 0.21 µm radius in 

cyclohexane at 25 Co.   

The last two data sets are extrapolated values at 

infinite dilution from the concentration behavior of 

hard spheres in the colloidal range.  
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Table 1. Fluid parameters. Viscosities taken from documents by Jansen et al. (1986) and Davis et al.  (1991). 

The pressure gradient Pf from Eq.11, the tributary volume emax from Eq. 6 and the maximum spherical 

expansion ξmax  as defined for Eq. 2.  

Fluid T °C 
µ  

(mPa-s) 
Gf 

Pf 

(Pa/m) 

Gs 

Solids 
emax ξmax 

Cyclohexane 25.0 0.898 0.774 605.4 1.8 16.62 5.31 

Cyclohexane 25.0 0.898 0.774 605.4 1.75 15.81 4.98 

Toluene 25.0 0.552 0.864 415.4 1.75 20.92 7.11 

Water 15 1.1390 0.9992 991.4 2.65 16.33 5.19 

Water 20 1.0030 0.9983 872.2 2.65 18.57 6.12 

 

Table 2. Comparison of reported radius by three techniques and computed from Eq. 2. Calculated radiuses 

from extrapolated hard sphere limit velocities Uo from Jansen et al. (1986) and Davis et al. (1991) and 

calculated radius from measured settling velocities from Zegzhda (1934), Arkangel’skii (1935) and Sarkisyan 

(1958) reproduced by Cheng, N. (1997);  and from Raudkivi (1990), also reproduced by Cheng, N. (1997). 

     TEM DLS Measured Calculated 

Eq.2 

No Author Fluid / T °C Solids 

Gs 

Uo 

(µm/s) 

rs 

(µm) 

rs 

(µm) 

 rs (µm) 

1 Raudkivi Water / 20 2.65 1660   25 24.977 

2 Arkangel'skii  Water / 15 2.65 1410   25 24.985 

3 Raudkivi Water / 20 2.65 414   12.5 12.473 

4 Arkangel'skii  Water / 15 2.65 223   10 9.936 

5 Raudkivi Water / 20 2.65 66.3   5 4.992 

6 Arkangel'skii  Water / 15 2.65 56.5   5 5.001 

7    14.1   2.5 2.498 

8    0.57   0.5 0.502 

9 Davis  Cyclohexane / 25 1.80 0.1194 0.195  
 

0.258 

10 et al.   0.0750 0.14  
 

0.205 

11    0.0500 0.12 0.155 
 

0.167 

12    0.0610 0.125 0.175 
 

0.185 

13    0.0472 0.115  
 

0.162 

14    0.0250 0.08 0.1 
 

0.118 

15 Jansen Cyclohexane / 25 1.75 0.00234 0.031 0.037 
 

0.037 

16 et al. Toluene / 25  0.00377 0.031 0.037 
 

0.038 

Here we choose to compute the radius from the 

given velocities.  The choice is due to issues 

regarding the accuracy of the measuring techniques 

in the colloidal range as quoted by Wang et al 

(2007), “Despite the fact that there exist several 

techniques capable of characterizing nanoparticle 

sizes, their measurement results from the same 

sample often deviate from each other by an amount 

that is considered significant on the nanometre 

scale”, so that there is additional uncertainty on the 

actual particle sizes.  Table 1 presents the fluid 

properties, the specific gravity of the solids, the 

computed pressure gradient and expansion and 

Table 2 presents the measured settling velocities for 

sand, the extrapolated hard sphere limit velocities 

Uo, the DLS (Dynamic Light Scatter) and the TEM 

(Transmission Electron Microscopy) measurements; 

and the computed radiuses from Eq. 2. 

Note on the results on lines 1 to 8 the extreme 

agreement with the reported radiuses in water at 15 

and 20 Co.  Also to be highlighted, note the results 

on line 15 and 16 for identical organophilic silica 

particles in cyclohexane and toluene.  Despite the 

substantial differences in expansion, viscosity and 

pressure gradient, Eq. 2 computes the same radius 

within a margin of 0.25%. 

In addition, Eq. 2 appears to overestimate the radius 

for the colloidal range, with very close agreement 

however, with the DLS measurements.  The writer 

takes the opportunity to highlight a fact that make 

settling velocity measurements highly biased, 

especially, in the colloidal range (the experiments 



Y. Mendez / JAFM, Vol. 5, No. 4, pp. 123-129, 2012.  

 

6 

 

can last thousands of hours).  The issue, to the 

knowledge of the author, has not been pointed out 

in the literature, neither the authors of the studied 

papers have shown concern about it.  As a result of 

regularly conducting shallow refraction surveys, 

I’m very familiar with equipment induced (even 

very small equipment) ground vibrations and other 

sources of ambient noise, which include air noise (P 

wave).  In general, seismic surveys are conducted 

by placing receivers (geophones) on the ground.  

The time history of displacement of an oscillator, in 

the receiver, is displayed in a computer and can be 

recorded.  Qualitatively, all buildings can be 

considered to be subject to a permanent time history 

of accelerations that can be considered to be very 

significant in the micron and submicron range.  

Fluids, at any location can in addition be subject to 

significant vibrations by air noise.   In the context of 

our scale and dynamics, one should note that such a 

motion will induce an influential effect.  On the 

grounds of our flow model, one can expect a greater 

settling rate due to the increase in the expansion that 

such motion would cause.  The results in the 

colloidal range in Table 2 appear to suggest the 

expected influential effect of ambient vibrations, 

although, the outcome of the computation, 

regardless, is quiet notable. 

In this section, we have finished the flow model for 

the settling velocity of spherical and non spherical 

particles in creeping motion derived in previous 

work.  Further insights and improvement follows in 

the following section regarding non spherical 

particles. 

5. NON SPHERICAL PARTICLES  

In previous work, the following equation was 

derived for the settling velocity of non spherical 

particles: 
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Where e1max is the maximum tributary ratio emax 

multiplied by the inverse of the aspect ratio of an 

oblate spheroid particle having dimensions b for ½ 

the thickness and a for the radius. F(a,b) is defined 

as f(a,b)=(b/a)3/2.  The factor 0.001 is just to 

remove the difficulty of the relationship turning into 

one when e tend to emax but undefined when e is 

exactly emax at the far end of the velocity profile.  

This difficulty only arises when computing the 

values for the entire profile.   Simplification of Eq. 

14 is hence simple when written as follows: 
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As written in Eq. 14 is of greater interest when 

considering its derivation.  From its form, in Eq. 15, 

we note the first ratio, which has a factor of ½, as a 

consequence of the integration, is the same ratio 

that appears in Eq.2.  The second ratio is the volume 

to area ratio squared of the particle and the third 

ratio is the ratio of the maximum spherical 

expansion to the maximum non spherical 

expansion.  Eq. 15 can be verified to turn into Eq. 2 

when the particle is a sphere.  It can also be further 

simplified.  The computation in Eq. 15 also relies in 

an accurate characterization of the driving force, via 

specific surface area SSA and geometry that 

correlates accurately to the SSA. 

Equation 14 was derived as a result of the insights 

of the impact of the shape and magnitude of the 

driving force on the geometry and the size of the 

expansion.  In this approach, we derived a 

relationship to compute the shear stress across a 

tributary volume that is neither planar, nor spherical 

and conducted the integration to compute the 

velocity.   

Using the same understanding the following 

alternative approach is proposed to derive a 

relationship to compute accurate settling velocities 

for non spherical particles.  Consider an oblate 

spheroid of dimensions a and b of known specific 

gravity having a volume Vo=4/3πa2b and surface 

area Ao=2πa2(1+(b/a)3/2) say in water at 20 Co.  The 

volume of fluid retained in the ambient fluid Vf can 

be computed as Vf=emaxVo and a pseudo sphere of 

radius rsp having the same surface area and wall 

shear of the non spherical particle can be found as 

rsp=a((1+(b/a)3/2))/2)1/2.  From our definitions the 

maximum pseudo tributary volume epmax follows as 
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One can hence compute the settling velocity Vsp of 

the pseudo sphere of radius rsp that settles at the 

same velocity Vnsp of the non spherical particle as 

( ) 












+−+

×
−

=

3

2

max

max

2

1
3

2
1

2

p

p

spf

nsp

e
e

rP
V

µ
 (17) 

The pseudo expansion so obtained is just a mean to 

model the flatter expansion mobilizing the same 

shear stress as the non spherical particle.  In the 

latter approach, we note that the pseudo sphere is 

quiet large but this can be done with impunity as 

Eq, 17 is a computation within the geometry of the 

ambient fluid, as it relates to the driving force, not 

the solid sphere.  The computation using the pseudo 

sphere is in very close agreement with Eq. 15 and 

the corresponding experimental data but it offers a 

simpler and improved rational to model the 

tributary volume.   

Based on the fact that there is always a sphere of 

radius rs that settles at the same velocity as the non 

spherical particle, a chart was developed for the 

thickness and aspect ratio of all particles settling at 

a given velocity shown in Figure 1. 

 

Fig. 1. Combination of aspect ratio thickness 

of particles with Gs = 2.62 settling at 0.380 

and 0.194 µm/s for coins and oblate spheroids. 
   

Using the same approach we note 

max

2

max

2 ξξ spp rr =  (18) 

This can be used to construct the same chart using 

the definitions explained above. 

Equation 2, via expansion, pseudo expansion and 

pseudo radius can be used to solve for the settling 

velocity for a wide variety of geometries.  Other 

than oblate spheroids and cylinders, previously 

discussed, polyhedra, cylinders, oblate spheroids 

and other geometries can be considered by means of 

Eq. 16 provided accurate characterization of the 

geometry, specific surface area and how they 

influence the expansion are used. It is also 

overstressed that although, the volume to area ratio 

of the particle is of great significance, as in fact 

correlates exactly with the radius for spheres, the 

volume to area ratio should not be used, as is, on 

Eq.2 (Using the expansion or the pseudo 

expansion), for non spherical particles as such 

substitution implies a complete break down of the 

relationships controlling the dynamics of the 

ambient fluid about settling objects.   

As a corollary, note that the rational provided in this 

flow model provides the grounds to develop the 

relationships for a solution from the cylinder that 

extends to infinite and a stream function for both, 

the sphere and the infinite cylinder.  The readers are 

encouraged to undertake the task. 

6. CONCLUSION   

A flow model for the settling velocity of spherical 

and non spherical particles have been presented.  

The model, allows a rational approach to embrace a 

wide range of sedimentation problems with a wide 

perspective. The model is expected to contribute to 

further developments for isolated particles, hindered 

sedimentation, permeability, the sedimentation of 

aggregates, etc.; where further developments are 

needed.  
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